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Summary

Partly based on a mini-review of recent
AMPT developments on Nucl. Sci. Tech. (2021)

and collaborations with Guo-Liang Ma,
Bedangadas Mohanty, Md. Rihan Haque,

Fugiang Wang, Chao Zhang, Liang Zheng, et al.
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A Multi-Phase Transport (AMPT)

Constructed as a self-contained kinetic description of heavy ion collisions

* evolves the system from fluctuating initial conditions to final observables;
* produces particles of all flavours at all Py & y;

* includes non-equilibrium initial condition & dynamics.

Initial conditions

Parton Cascade
Source codes online since 2004,

Hadron Cascade
available at the ECU website

Final partic]e spectra http.://myweb.ecu.edu/linz/ampt/

ZWL, Ko, Li, Zhang & Pal, PRC (2005);
ZWL & Zheng, NST (2021).

A+B

Zi-Wei Lin (ECU) RBRC Workshop on Physics Opportunities from the RHIC Isobar Run, 1/25-28/2022 3


http://myweb.ecu.edu/linz/ampt/

Time evolution of 1 central Au+Au event at 200AGeV
from AMPT-SM (the String Melting version, applicable at high energies):
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Animations at the ECU website
http://myweb.ecu.edu/linz/ampt/



http://myweb.ecu.edu/linz/ampt/

Transport models for finite systems

* For large systems at very high energies:
transport model approaches hydrodynamics,
transport model (particles, scatterings, microscopic picture) are complementary to
hydrodynamics-based models (T, EoS, transport coefficients).

* For finite/small systems at finite energies:
non-equilibrium effects can be important,
important to develop transport model/kinetic theory & compare with
hydrodynamics to understand physics including collectivity of finite size systems.

Heiselberg & Levy, PRC (1999), Borghini et al. EPJC (2018), Kurkela et al. PLB (2018) & EPJC (2019), ...
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* Escape mechanism dominates v, for small systems

& even semi-central AuAu @200 GeV.
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Improvements relevant for isobar collisions

They cover the following AMPT components:

Initial conditions

Parton Cascade

Hadron Cascade

Final particle spectra

Incorporation of nucleus of different shapes

A+B

Local nuclear scaling and
self-consistent system size dependence

The new quark coalescence model

Implementation of charge conservation

ZWL & Zheng, NST (2021)
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Incorporation of nucleus of different shapes

Rihan H ZWL & Mohanty, PRC (2012 .. : :
fan Haque. N ( ) Eccentricity €, and triangularity &;:

Nucleon density distribution of 233U in AMPT &, and v, are very sensitive to orientation.
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Incorporation of nucleus of different shapes

For isobar nuclei in the AMPT initial condition,
protons & neutrons are sampled according to radial
density distributions from

density functional theory (DFT):

I I

0.1

SLy4-HFB

0.3

H.J. Xu et al. PRL (2018); &
H.J. Xu’s talk on Tuesday & .

Sizable v, difference is found
for isobar systems:
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Local nuclear scaling and self-consistent size dependence
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String Melting AMPT describes flows and HBT
but used to (before 2014) fail badly in hadron spectra.

We later realized that the model

can simultaneously describe dN/dy, pr—spectra & v,
(for bulk matter at low-p) in central and
mid-central high energy AA collisions,

as long as a very small Lund b, parameter is used.
ZWL, PRC (2014)

Lund symmetric string fragmentation function:
2
f(z) x 271 (1 — g) % e brmr/z

b, typical values (in 1/GeV?):
0.5 (AMPT-def), ~0.58 (PYTHIA6.2), 0.9 (HUING1)

b; ~0.15 is needed for AMPT-SM for high energy AA,

corresponds to a much higher string tension:
1

K X bi(2+ aL) ZWL et al. PRC (2005)
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Local nuclear scaling and self-consistent size dependence

Different values of by are needed for pp and central AA,
same for the minijet cutoff scale p, (related to saturation scale Q, C Zhang et al. PRC (2019);

in the AMPT model updated with modern nPDF). Zheng et al. PRC (2020)
We propose to scale them with local nuclear densities:
bip
. br(sa, sB,s) = ToDTaGn /T, IPO Similar geometric form preferred
PRC (2(%21) ' for initial entropy deposition:
po(sa, s, 8) = Pl ($)[y/ Ta(sa)Tp(s8)/Tp1* Bernhard et al. PRC (2016)
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Local nuclear scaling and self-consistent size dependence

The scaling allows AMPT-SM to self-consistently describe the system size dependence,
including centrality dependences of AuAu & PbPb and smaller systems.

C Zhang et al. PRC (2021)
Centrality dependences of <pT> are now reasonable,

much better than public AMPT (v2.26t9) Also works for smaller systems:
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No longer free parameters — 7 ... can be better studied
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The new quark coalescence model

Old Coalescence
(in public AMPT)

>

9 9m 98 qm ...

There is an artificial constraint
that forces the separate conservation
of the numbers of mesons, baryons
and antibaryons for each event
(while only net-baryon conservation
is necessary):

* Quarks from the melting of mesons
search all antiquarks and choose the
closest antiquark to form mesons.

* Then quarks from the melting of
baryons search all remaining quarks

and choose the closest two quarks to
form baryons

(same for anti-baryons).

New coalescence
Y. He & ZWL, PRC (2017)

We remove the artificial constraint,
quarks now have freedom to
form either meson or baryon:

dy e 1
q1 o
fdp ™,
& oo
: o
For example, for a quark g;. 2 q3

d - closest distance to an antiquark (in rest frame)
dg: average distance among the 3 quarks
after finding closest g, & g3

If dg< d;; * gy, qq Will coalesce to a baryon;
otherwise, qq will coalesce to a meson.

— Single coalescence parameter gy, ~0.6
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New quark coalescence is more efficient,

especially for (anti)baryons.

Improves (anti)baryon observables,
including p & pbar yield & py—spectra
and multi-strange Bbar/B ratios:
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Implementation of charge conservation

Hadronization

Why i1s charge conservation violated in public AMPT?

First reason: The hadron cascade
has K* and K- as explicit particles,
but not K? and K°-bar.

Currently, to let all kaons interact:

e before hadron cascade,

we change K to K* (also: K’-bar to K*)
e after hadron cascade,

we change half of final K* into K°.

Second reason:
Many reactions in the hadron cascade are not

implemented for each possible isospin/charge state
— Need to identify & correct each such reaction / l \
while respecting detailed balance relations

This work has been done in a version of AMPT:
Z.W. Lin & G.L. Ma, unpublished (2018).

This charge-conserved version has been shared with some colleagues for CME studies:
Tang, CPC (2020); Choudhury et al. EPJC (2020).
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Further developments relevant for 1sobar collisions

* Further improve the nitial condition from HIJING:

There 1s a small p,-asymmetry of hadrons in symmetric collisions:

this leads to rapidity-asymmetry of final state hadrons,

especially antibaryons from public AMPT-SM at low energies
(thanks to H.Z. Huan's group for pointing out this issue).

There 1s an artificial ordering of initial protons and neutrons
in the nucleus along the z direction when sampling Woods-Saxon
(protons take ~half of the z range & neutrons take the other ~half):

this affects the initial net-charge distribution
and could affect charge-dependent observables.

* Seclf-consistent parton transport under electromagnetic fields

* Update the public AMPT model with recent improvements
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Summary

AMPT provides a self-contained kinetic description of heavy 1on collisions

Recent improvements make AMPT more versatile and reliable:

Incorporation of deformed or arbitrary nucleon distributions
enables studies of i1sobar collisions.

New quark coalescence
improves baryon & antibaryon productions.

Implementation of charge conservation
improves studies of charge-dependent observables.

Local nuclear scaling of initial condition parameters
significantly reduces uncertainty from free model parameters
and enables us to focus on QGP properties like
o (parton cross section, or mp) and its T-dependence < n(T)

Thanks for your attention!
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